Flowing partially penetrating well: solution to a mixed-type boundary value problem

نویسنده

  • G. Cassiani
چکیده

A new semi-analytic solution to the mixed-type boundary value problem for a ̄owing partially penetrating well with in®nitesimal skin situated in an anisotropic aquifer is developed. The solution is suited to aquifers having a semi-in®nite vertical extent or to packer tests with aquifer horizontal boundaries far enough from the tested area. The problem reduces to a system of dual integral equations (DE) and further to a deconvolution problem. Unlike the analogous Dagan's steady-state solution [Water Resour. Res. 1978; 14:929±34], our DE solution does not su€er from numerical oscillations. The new solution is validated by matching the corresponding ®nite-di€erence solution and is computationally much more ecient. An automated (Newton±Raphson) parameter identi®cation algorithm is proposed for ®eld test inversion, utilizing the DE solution for the forward model. The procedure is computationally ecient and converges to correct parameter values. A solution for the partially penetrating ̄owing well with no skin and a drawdown±drawdown discontinuous boundary condition, analogous to that by Novakowski [Can. Geotech. J. 1993; 30:600±6], is compared to the DE solution. The D±D solution leads to physically inconsistent in®nite total ̄ow rate to the well, when no skin e€ect is considered. The DE solution, on the other hand, produces accurate results. Ó 1999 Elsevier Science Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupled fixed points of generalized Kanann contraction and its applications

The purpose of this paper is to find of the theoretical results of fixed point theorems for a mixed monotone mapping in a metric space endowed with partially order by using the generalized Kanann type contractivity of assumption. Also, as an application, we prove the existence and uniqueness of solution for a first-order ordinary differential equation with periodic bou...

متن کامل

An Axisymmetric Torsion Problem of an Elastic Layer on a Rigid Circular Base

A solution is presented to a doubly mixed boundary value problem of the torsion of an elastic layer, partially resting on a rigid circular base by a circular rigid punch attached to its surface. This problem is reduced to a system of dual integral equations using the Boussinesq stress functions and the Hankel integral transforms. With the help of the Gegenbauer expansion formula of the Bessel f...

متن کامل

A Comprehensive Solution for Partially Penetrating Wells with Various Reservoir Structures

This paper presents analytical solutions and simulations for pressure transient behavior of the partially penetrating wells (PPWs). The Newman’s product method was adopted to develop the basic instantaneous source functions which characterize the response of PPWs. These results were obtained based on the solution of fully penetrating wells (FPWs) and they were presented in Laplace domain. Furth...

متن کامل

Existence and uniqueness of positive and nondecreasing solution for nonlocal fractional boundary value problem

In this article, we verify existence and uniqueness of positive and nondecreasing solution for nonlinear boundary value problem of fractional differential equation in the form $D_{0^{+}}^{alpha}x(t)+f(t,x(t))=0, 0

متن کامل

A MIXED PARABOLIC WITH A NON-LOCAL AND GLOBAL LINEAR CONDITIONS

Krein [1] mentioned that for each PD equation we have two extreme operators, one is the minimal in which solution and its derivatives on the boundary are zero, the other one is the maximal operator in which there is no prescribed boundary conditions. They claim it is not possible to have a related boundary value problem for an arbitrarily chosen operator in between. They have only considered lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999